Effective connectivity within the distributed cortical network for face perception.

نویسندگان

  • Scott L Fairhall
  • Alumit Ishai
چکیده

Face perception elicits activation within a distributed cortical network in the human brain. The network includes visual ("core") regions, as well as limbic and prefrontal ("extended") regions, which process invariant facial features and changeable aspects of faces, respectively. We used functional Magnetic Resonance Imaging and Dynamic Causal Modeling to investigate effective connectivity and functional organization between and within the core and the extended systems. We predicted a ventral rather than dorsal connection between the core and the extended systems during face viewing and tested whether valence and fame would alter functional coupling within the network. We found that the core system is hierarchically organized in a predominantly feed-forward fashion, and that the fusiform gyrus (FG) exerts the dominant influence on the extended system. Moreover, emotional faces increased the coupling between the FG and the amygdala, whereas famous faces increased the coupling between the FG and the orbitofrontal cortex. Our results demonstrate content-specific dynamic alterations in the functional coupling between visual-limbic and visual-prefrontal face-responsive pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Let's face it: It's a cortical network

Face perception elicits activation within a distributed cortical network in the human brain. The network includes visual ("core") regions, which process invariant facial features, as well as limbic and prefrontal ("extended") regions that process changeable aspects of faces. Analysis of effective connectivity reveals that the major entry node in the "face network" is the lateral fusiform gyrus ...

متن کامل

Effective Connectivity within a Core Cortical Network of Face Perception: Evidence for Inferior Occipital Gyrus sensitivity for Faces with Implicit Emotion

Emotional face perception is a highly developed visual skill in humans that occurs along a distributed neural system including: visual, limbic, and prefrontal areas of the human brain. It has been proposed that the core regions of face perception include the inferior occipital gyrus (IOG), fusiform gyrus (FG), and superior temporal sulcus (STS). We examined the modulation of effective connectiv...

متن کامل

Is Social Phobia a “Mis-Communication” Disorder? Brain Functional Connectivity during Face Perception Differs between Patients with Social Phobia and Healthy Control Subjects

Recently, a differential recruitment of brain areas throughout the distributed neural system for face perception has been found in social phobic patients as compared to healthy control subjects. These functional abnormalities in social phobic patients extend beyond emotion-related brain areas, such as the amygdala, to include cortical networks that modulate attention and process other facial fe...

متن کامل

Network dynamics of human face perception

Prevailing theories suggests that cortical regions responsible for face perception operate in a serial, feed-forward fashion. Here, we utilize invasive human electrophysiology to evaluate serial models of face-processing via measurements of cortical activation, functional connectivity, and cortico-cortical evoked potentials. We find that task-dependent changes in functional connectivity between...

متن کامل

The Lateral Occipital Cortex in the Face Perception Network: An Effective Connectivity Study

The perception of faces involves a large network of cortical areas of the human brain. While several studies tested this network recently, its relationship to the lateral occipital (LO) cortex known to be involved in visual object perception remains largely unknown. We used functional magnetic resonance imaging and dynamic causal modeling (DCM) to test the effective connectivity among the major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 2007